地盤工学会東北支部災害協定に基づく講習会 『地盤リスクに関するシンポジウム』 主催:公益社団法人地盤工学会東北支部、共催:秋田県、秋田地盤研究会 会場:秋田県庁第二庁舎 8階 大会議室, 2019(令和元)年11月22日.

造成地盤のリスク

~最近の地震被害による宅地造成地の主なリスク~

地盤リスク検討小委員会 (復建技術コンサルタント)

幹事委員 佐藤 真吾

博士(工学), 技術士(建設部門/総合技術監理部門), 地盤品質判定士

内 容

- 1. 地震・豪雨時の造成地盤のリスク
- 2. 宅地造成地の地震被害の特徴 〈最近の3つの大地震被害(主な被害都市)〉 2011年 東北地方太平洋沖地震(仙台市) 2016年 熊本地震(益城町) 2018年 北海道胆振東部地震(札幌市)
- 3. 宅地造成地の地震被害のメカニズム
- 4. 宅地造成地の地震リスクについて

1. 地震・豪雨時の造成地盤のリスク

3

【地震被害】宅地造成地の滑動による被害例

(3) 腹付け盛土の滑動

(5) 盛土下の地盤の滑動

(2) 谷埋め盛土の滑動

(4) 腹付け盛土の滑動

(6) 盛土下の地盤の滑動

_

【地震被害】宅盤の不同沈下被害例

(1) 谷埋め盛土(滑動)

(2) 谷埋め盛土(滑動)

(3) 地震斯層

(4) 切盛境界

(5) 谷埋め盛土(揺すり込み沈下)

(6) 宅盤下の火山灰質粘性土の流動化

(7) 盛土地盤の液状化

(8)盛土地盤の液状化

(9) 地盤の液状化

(10)盛土地盤の液状化

(11) 盛土地盤の液状化(滑動) (12) 地盤の液状化(マンホールの隆起

12) 地盤の液状化(マンホ

5

【地震被害】不適格擁壁の被害例

(1) 増し積み擁壁

(2) 増し積み擁壁+建築ブロック

(3) 増し積み擁握

(4) 圡白積 🗸

(5) コンクリートプロック空石積み擁壁

(6) 石積み擁壁

(7) 二段擁壁

(8) 二段獲

(9) 高さ5mを超えるブロック積み擁壁

(10) 建築ブロック塀の擁壁

(11) 玉石積み擁壁上に家屋建設

(12) 支持力不足のL型擁壁

【地震被害】斜面に近接した住宅の被害例

(1) 盛土斜面

(2)盛土斜面

(3) 自然斜面

【地震被害】土砂災害によるもらい災害例

(1) 腹付け盛土の滑動

(2) 裏山の斜面崩壊

(3) 大規模地すべり

6

•

【地震被害】土石流による被害例

(1) 土石流の発生から到達時間(約10分)

(4) 斜面崩壊による土石流の流路変化

(7) 土石流の流下痕跡

(2) 土石流の源頭部(発生源)

(5) 土石流の流路変化により高台まで到達

(8) 土石流地盤の泥濘化状況

(3) 土石流の流路と堆積状況

(6) 土石流の堆積状況

(9) 土石流による流木堆積状況

9

【豪雨被害】土石流による被害例

【土砂災害特別警戒区域】 建築物に損壊が生じ住民等の生命 又は身体に著しい危害が生ずるお それがあると認められる区域

一連の豪雨で土石流は数回発生。 レッドソーンは1回目の流下範囲とほぼ一致していたものの、1回目の土石流で流路が塞がれたため、 2回目以降の土石流では予測していない方向に多量の土砂が流出

※山光:エ沙火古小―ブルいつしょ

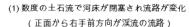
【豪雨被害】盛土斜面の被害例

(1) 杭基礎家屋の擁壁崩壊

(3) 谷埋め盛土斜面の崩壊

(5) 腹付け盛土斜面の崩壊

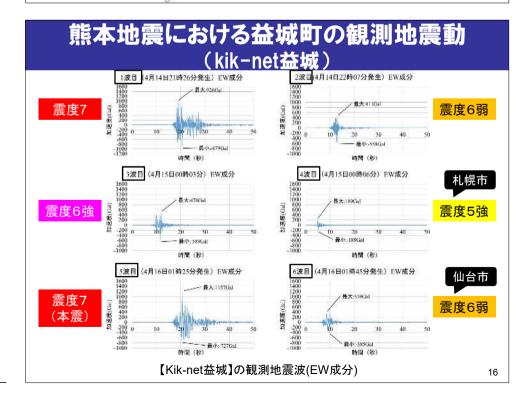
(2) 杭基礎家屋の擁壁崩壊



(4) 谷埋め盛土斜面の崩壊

(6) 地震で被災した擁壁の崩壊

【豪雨被害】土石流による被害例


(2) 河床閉塞により流路を変えた土石流が住宅地を直撃

12

最近の3つの大地震における主な宅地被災地 【2018(H30)年 北海道阳振東部地震】 • 発生日時: 2018年9月6日 3時8分 ・震央:北海道胆振地方中東部、深さ37km ・地震の種類:逆断層型地殼内地震 ・規模:マグニチュードM6.7(気象庁) 札幌市 •最大震度:7(厚真町) ・札幌市清田区(清田消防署); 震度5強(計測震度5.1),最大加速度278gal(南北) 【2016年(H28年) 熊本地震】 • 発生日時: 2016年16月6日 1時3分 ・震央:熊本県熊本地方、深さ12km ・ 地震の種類: 右横ずれ断層地震 ・規模:マグニチュードM7.3(気象庁) 仙台市 • 最大震度:7(益城町) **震度7(計測震度6.7)**, 最大加速度1157gal(東西) 【2011年(H23年) 東北地方太平洋沖地震】 • 発生日時: 2011年3月11日 14時46分 ・震央:三陸沖(仙台市の東方70km) ・地震の種類:海溝型地震、深さ:23.74 km • 規模:マグニチュードM9.0(気象庁) • 最大震度:7(栗原市築館) 仙台市の丘陵地造成宅地: 震度6弱(計測震度5.7), 最大加速度703gal(東西)

擁壁被害

【東日本大震災】

盛土の 滑動

【熊本地震】

空石積み が目立つ

17

北海道胆振東部地震(札幌市の被害)

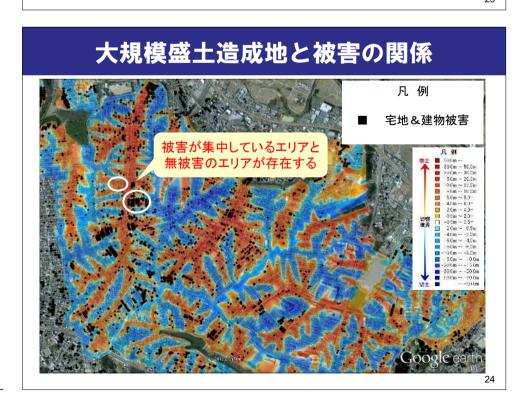
19

宅盤被害

【東日本大震災】

盛土の 滑動

北海道胆振東部地震(札幌市の被害)



2-1 2011年東北地方太平洋沖地震 (東日本大震災)における 造成宅地の地震被害(仙台市)

21

丘陵地造成宅地の被災状況【仙台市内】 被災宅地;5,728箇所 ※平成25年7月現在 は他的東照区 は他の東照区 は他の東にはいる はいる はいる

盛土造成地の被害形態

(1) 滑動崩落• 変形被害

地山と盛土の境界をすべり面とす る地すべり的被害


a) 全体すべり

盛土の中でも、ひな壇部の特に緩 い盛土部分が変状する地すべり 的被害

緩い盛土が地震動により揺すり込 み沈下する被害

(2) 沈下被害 (不同沈下)

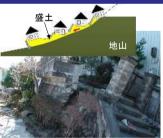
地震動で泥水が噴出する等の現 象の後に沈下が発生する被害 また, 噴泥等がなくても、地中で 液状化が発生して沈下する被害

d) 液状化による沈下

擁壁被害

臃壁が耐震性不足により損壊ま たは変形することにより宅地地盤 が変状する被害

e) 擁壁の安定性不足による変状


25

2-2 2016年熊本地震における 造成宅地の地震被害(益城町)

27

造成宅地の被害要因の分類

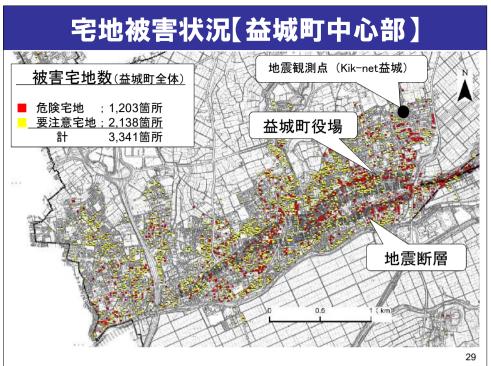
(1) 谷埋め型盛土の滑動に起因

(4) のり面の安定性

不足に起因

(2) 腹付け型盛土の滑動に起因

(3) 切盛境界に起因



(5) 擁壁の安定性 不足に起因

(6)緩い盛土状態 に起因

(7) 地盤の液状化 に起因

熊本地震における宅地被害の分布 **艾爾斯德斯與希腊斯索斯斯斯斯斯** 既存国庫補助制度: 国庫補助事業以外による対応 宅地附属化推進事業 後興基金による支援制度: 約10,000件 67% 新たな拡充制度 約 1.200 件 8% ※出典:熊本県土木部, 平成28年熊本地震 28 熊本県の被災状況【土木部全体版】 【熊本地震における宅地被害への対応】 被災宅地:約15,000

被害状況 地震の慣性力だけでなく、地盤も滑動

2-3 2018年北海道胆振東部地震 における造成宅地の地震被害(札幌市)

35

建物被害状況【中心部】

町内の 住家総数 (棟)		被害判定					
	全壊	大規模半壊	半壊	一部損壊	無被害		
10,742	3.026	791	2.442	4.325	158		• • K X
割合(100)	28.2%	7.3%	22.7%	40.3%	1.5%	T	
	全建物 0	D98.5%7	小被告				AMTTERS TO JUL
					【建物罹 ● 全:	災証明】 壊被害	
	TUN			V C			150

北海道胆振東部地震(札幌市の被害)

北海道胆振東部地震(札幌市の被害)

北海道胆振東部地震(札幌市の被害)

北海道胆振東部地震(札幌市の被害)

平成30年北海道胆振東部地震【札幌市清田区】 火山灰質土の流動化と強度回復

女子アナが泥から出られない「北海道大地震」液状化の恐怖

SmartFLASH 9/15(土) 6:00配信

Copyright (C) 2018 Kobunsha Co., Ltd. All Rights Reserved.

札幌市清田区の現場付近は、市内で最も被害が大きかった場所。9月6日の未明に地震が起きた後、報道陣は一斉に現場に入り、中継などをしていた。

「最初は近所の住民が何人も助けに来ました。手には スコップやショベルを持って集まった。ところが、あたり 一帯が液状化しているので、埋まっている土屋ア ナの近くに行って、泥をかき出すことができない。

ー緒に埋まった男性のスタッフは、自力で抜け出したようで、土屋アナに『頑張れ』と声を掛けていました。住民の一人は消防に救助を求めて連絡をしていました。ところが、実際に**消防が壓け付けたのは、電話してから1時間半も終過**してからでした。

当日は天気がよかったこともあり、教息が到着する 間に液状化した泥がどんどん固まっていったんで す。まるで石のように関くなっていた。写文に埋 まった土屋アナのすぐ隣に教急隊員が立っていま すが、それは泥が乾燥して固くなり、立つことがで きたからなんです。

教急隊員は梯子を横に寝かせて足場を作り、少しず つ彼女を引き上げようとしていました。でもなかなか引き 上げることができない。周りにいる住民たちも、心配そう に教助劇を見つめ「頑張って」と声をかけていました」

付近の住民らが見守るなか、土屋アナらを救い出す 作業が続いたが、液状化した泥に埋まると身動きで きなくなることがわかる。

「ようやく教助できたのは夕方の5時半ごろ。彼女 が埋まってからじつに5時間半もかかって教出でき たんです。住民らは一斉に拍手を送り、教出できてよ かったとロ々に言っていました。

3. 宅地造成地の地震被害のメカニズム

41

3-1 2011年東北地方太平洋沖地震 (東日本大震災)における造成宅地の 地震被害のメカニズム(仙台市)

造成宅地の被害メカニズム【仙台市】

素因

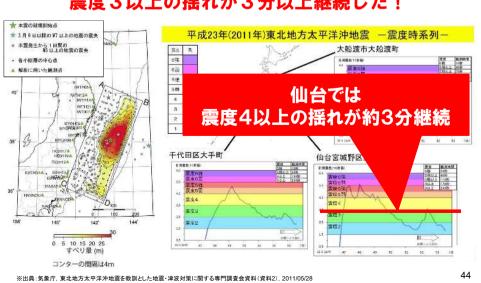
- 地震動に弱い地盤(←大規模盛土造成地)
 - ・盛土は脆弱(N値0~5⇒緩い状態)である
 - 地下水位が高い
- 擁壁の構造や支持力・安定性に問題がある

誘因

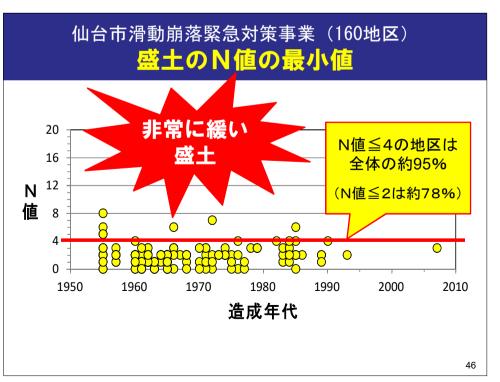
- 強い地震動(震度6弱~6強)が作用
- 長い時間継続して作用(約180秒継続)
- 飽和砂質土層では液状化が発生

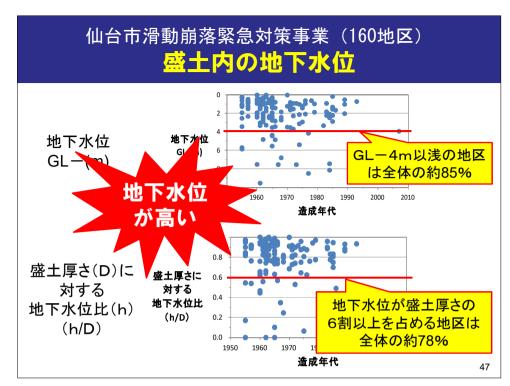
宅地被害

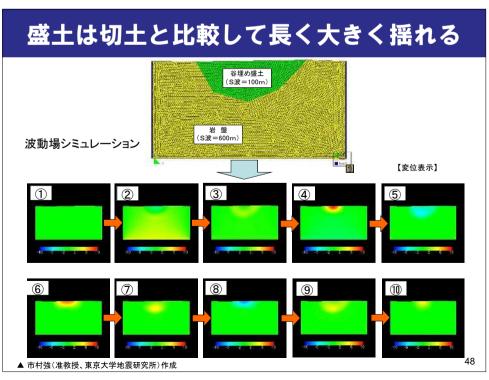
- 大規模盛土造成地の滑動崩落または変形
- 宅盤の不同沈下(段差、開口クラック等含む)
- 擁壁の破壊・変状(⇒宅盤の変状を助長)

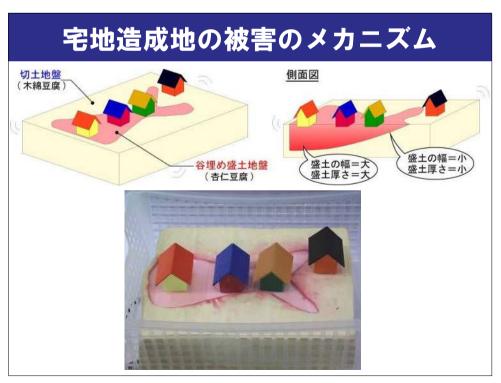


住宅等の構造物被害


4


地震の特徴(継続時間)


震度3以上の揺れが3分以上継続した!


-11-

盛土地盤における地震波の増幅特性 大きな揺れが 集中するエリア 最大速度(カイン)

盛土造成地の地すべり的被害(滑動崩落)

明瞭なすべり面が存在しない

- 盛土のすべり面は明瞭ではない
- ●自然地形の地すべりの場合は、特定の面がすべり面となるが、盛土の場合は状況によってすべり 面の位置や大きさ等が大きく変わる

5

3-2 2016年熊本地震における 造成宅地の地震被害のメカニズム

53

益城町中心部の表層地盤模式図 火山灰質粘性土層(盛土・黒ぼく・赤ぼく・灰土) 層厚 7~15m N值=0~2 火山灰質砂 N値≥10

【素因】宅地地盤は地震動に弱い性質

(自然含水比と液性限界が同じ地盤⇒地震動で流動化しやすい土)

【素因】宅地地盤は地震動に弱い性質

(自然含水比と液性限界が同じ地盤⇒地震動で流動化しやすい土)

【自然状態】

水分が少なく. 比較的固い

(灰土の自然含水比 平均63%)

【こね返し】

水分が滲みだし. 液体状に変化 (灰土の液性限界 平均56%)

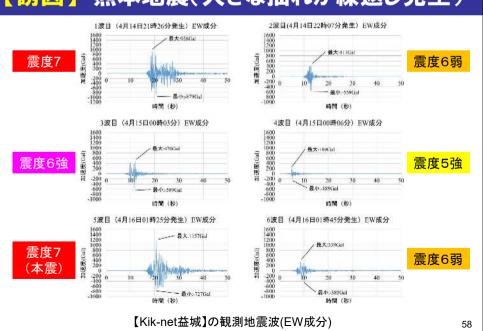
※撮影:泉谷聡志(東北大学)

【誘因】 熊本地震(大きな揺れが繰返し発生)

			マグニチュード	益城町宮園	KIK-net益城(KMMH16)	
発生日時	発生時刻	経過時間	Mj	の震度 (気象庁)	計測震度	最大加速度 (m/s²)
4月14日	21時26分	0	6.5	7	6.4	9.3 (EW)
4月14日	22時07分	41分後	5.8	6 弱	5.7	5.6 (EW)
4月15日	00時03分	2時間37分後	6.4	6 強	5.7	5.9 (EW)
4月15日	00時06分	2時間40分後	5.0	5 強	上記から連続した波形のため不記 載	
4月16日	01時25分	27時間59分後	7.3	7 (本震)	6.5	11.6 (EW)
4月16日	01時45分	28時間19分後	5.9	6 弱	5.5	3.8 (EW)

28時間で大きな揺れを6回観測

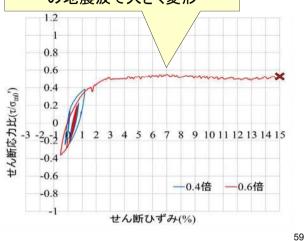
震度 7 2回


震度6強 1回

震度6弱 2回

震度5強 1回

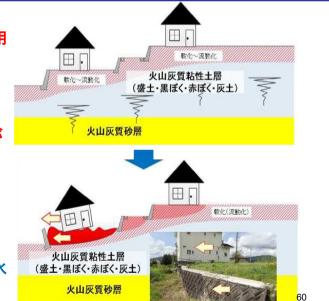
57


【誘因】熊本地震(大きな揺れが繰返し発生)

不飽和火山灰質粘性土(灰土)の 非排水繰返しせん断試験による残留変形特性

本震の0.6倍(6 m/s²相当) の地震波で大きく変形

中空ねじりせん断試験機


宅地被害のメカニズム

大きな地震動が短時間に繰返し(6回)作用

地表面に近く拘束圧 が比較的小さい場所 の火山灰質粘性土が 軟化~流動化して, 残留変形が発生

家屋が水平移動した 現象は、地盤が軟化 ~流動化した状態で、 次の大きな地震動(水 平力)が作用したこと による

3-3 2018年北海道胆振東部地震 における造成宅地の地震被害 のメカニズム

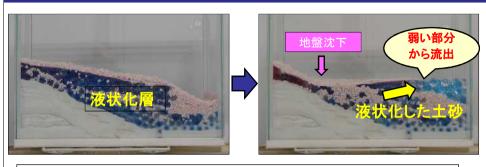
61

被害メカニズム 【被災メカニズム】 造成前の沢沿いに 大規模な沈下変形 液状化した土砂が 地中で 傾斜地 液状化発生 イメージ図 約250m 高い地下水位 土の粒子がパラバラに 離れて液体状になる 盛土 (地下水より下) 道路・家屋の変状が著しい範囲 夜状化した土砂が流動し堆積 盛土 (地下水より下) 62 ++hılı ※出典: 札幌市HP、清田区里塚地区の市街地復旧に向けた地元説明会資料

被害メカニズム

【被災メカニズム】

- ・地震により盛土の中の地下水位より下の部分で液状化が発生
- ・造成前の緩く傾斜した沢に沿って液状化した土砂が帯状に流動

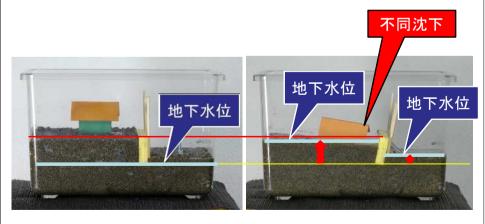

【被災メカニズムの発生要因】

- ■盛土の中で液状化が起きた要因
- ・砂質系火山灰の盛土内にある緩い土層 ⇒ 緩い土
- ・造成前の沢に沿った集水地形
- ·水を含みやすい土(砂質系火山灰) ⇒ 高い地下水位
- ・前日の台風21号による降雨(可能性)
- ■帯状に流動化が起きた要因
- ・造成前の沢に沿った地形
- ⇒ 傾斜地(高低差)
- ・砂質系火山灰での盛土
- ⇒ 軽く水を含みやすい土

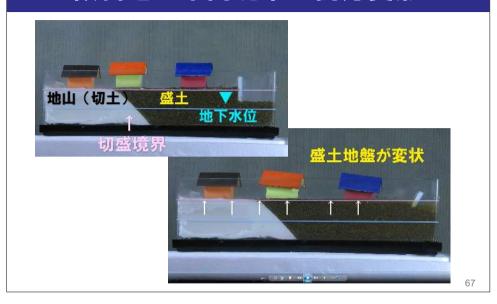
⇒これらの複合的な発生要因を踏まえた対策工の検討が必要。

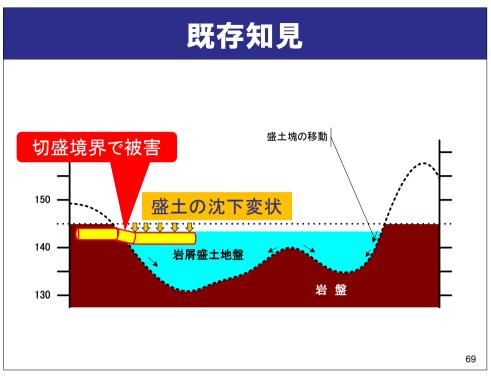
※出典:札幌市HP、清田区里塚地区の市街地復旧に向けた地元説明会資料

液状化による流動化の再現イメージ

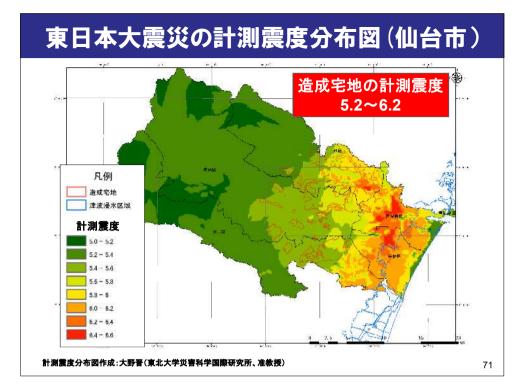


▲流動化した土砂の流出


ひな壇盛土の液状化現象と不同沈下


地震前

地震後


地盤の液状化による 傾斜地の不同沈下と側方変形

4. 宅地造成地の地震リスクについて

